

The value of
$$\iint dy \, dx$$
 over the region $x \ge 0$; $y \ge 0$; $x + y \le 1$ is

(a) $\frac{1}{3}$ (b) $-\frac{1}{2}$

(c) $\frac{1}{4}$ (d) $\frac{1}{2}$

Value of $\iint_{0}^{abc} dx \, dy \, dz$ is

(a) $a + b + c$ (b) abc

(c) $\frac{a + b + c}{2}$ (d) $a - b - c$

8.

(c)

$\int_{1}^{\infty} \frac{dx}{x^2} =$ (a) 1 (b) 0 (c) ∞ (d) 2

(a)
$$\frac{1}{5}$$
 (b) $\frac{1}{5}$
(a) $\frac{1}{5}$ (b) $\frac{1}{10}$

PART B — $(5 \times 5 = 25 \text{ marks})$ Answer ALL questions, choosing either (a) or (b).

11. (a) Show that the radius of curvature of the curve $y = c \cosh(x/c)$ at any point is $\frac{y^2}{c}$.

- (b) Find the formula for finding the radius of curvature of a curve expressed in polar form.
 12. (a) Find the (p-r) equation of the curve r = a sin θ.
- 12. (a) Find the (p-r) equation of the curve $r = a \sin \theta$.

 Or

 (b) Find all the asymptotes of the curves
- 13. (a) Find the position and nature of the double points of the curve $x^2(x-y) + y^2 = 0$.

 Or

 $x^3 - xy^2 + 6y^2 = 0$.

- (b) Trace the curve $y^2 = \frac{x^2(a+x)}{b-x}$.
- 1. (a) Evaluate $\iint xy \, dx \, dy$ over the positive quadrant of the circle $x^2 + y^2 = a^2$.

 Or

 (b) By changing into polar co-ordinates, evaluate
 - (b) By changing into polar co-ordinates, evaluate $\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^2}} (x^2 + y^2) dx dy.$

Code No.: 40568 E

Page 4 Code No.: 40568 E

[P.T.O.]

(a) Evaluate
$$\int_{-1}^{1} \frac{dx}{x}$$
.

Or

(b) Evaluate $\int_{0}^{\infty} e^{-x^2} dx$.

PART C —
$$(5 \times 8 = 40 \text{ marks})$$

Answer ALL questions, choosing either (a) or (b).

16. (a) Prove that the radius of curvature of $r^n = a^n \cos n\theta \text{ is } \frac{a^n r^{-n+1}}{n+1}.$

Or

- Show that in the parabola $y^2 = 4ax$ at the point 't', $\rho = -2a(1+t^2)^{3/2}$; $X = 2a+3at^2$ and $Y = -2at^3$.
- 17. (a) Prove that the evolute of the cycloid $x = a(\theta \sin \theta)$; $y = a(1 \cos \theta)$ is another cycloid.

Or

Page 5

(b) Find the asymptoms of $x^3 + 2x^2y - 4xy^2 - 8y^3 - 4x + 8y = 1$.

18. (a) Prove that the curve $x^4 = y^2(x+y)$ has a double cusp of the first species at the origin.

Or

- (b) Trace the curve y = (x-1)(x-2)(x-3).
- 19. (a) Evaluate $\iiint xyz \ dx \ dy \ dz$ taken through the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.

Or

- (b) Change the order of integration in $\int_{a}^{a} \int_{x}^{a} \frac{dy \, dx}{x^{2} + y^{2}}$ and evaluate it.
- 20. (a) Define (n) and prove that (n+1) = n! where n is a positive integer. Also test the convergence of (n).

Or

(b) State and prove relation between Beta and Gamma functions.