(7 pages)

Reg. No. :....

Code No. : 20710 E Sub. Code : AMMA 11

B.Sc. (CBCS) DEGREE EXAMINATION, APRIL 2021.

First Semester

 ${\it Mathematics-Core}$

CALCULUS AND CLASSICAL ALGEBRA

(For those who joined in July 2020 onwards)

Time : Three hours

Maximum : 75 marks

PART A — $(10 \times 1 = 10 \text{ marks})$

Answer ALL questions.

Choose the correct answer.

1. The curvature of the curve ax + by + c = 0 is

(a) b (b) a(c) 0 (d) none of the above

2. The radius of curvature of $y = e^x$ at (0, 1) is

- (a) 1 (b) 2
- (c) $2\sqrt{2}$ (d) none of the above

Page 2 Code No. : 20710 E

(a)	3	(b)	2
(c)	4	(d)	none of the above
If α	β, γ are the ro	ots of	$x^{3} + px^{2} + qx + r = 0$
then	$\sum \frac{1}{\alpha} =$	_•	
(a)	$-\frac{q}{r}$	(b)	$\frac{q}{r}$
(c)	$\frac{p}{r}$	(d)	none of the above
	•		
The 1	roots of the equatio	n x ⁿ -	+1=0 (<i>n</i> is even) ar
The 1 (a)	roots of the equatio all imaginary	n x ⁿ - (b)	+1=0 (<i>n</i> is even) ar (<i>n</i> - 1) imaginary
The 1 (a) (c)	coots of the equatio all imaginary (n-2) imaginary	n x ⁿ - (b) (d)	+1=0 (<i>n</i> is even) ar (<i>n</i> - 1) imaginary none of the above
The factor (a) (c) $2x^3 +$	coots of the equation all imaginary (n-2) imaginary of the root $-3x^2 - 3x - 2 = 0$ is	n x^{n} - (b) (d) (cs of -2 ,	+1=0 (<i>n</i> is even) ar (<i>n</i> - 1) imaginary none of the above of the equation the other roots ar
The range (a) (c) (a) (a) (a)	coots of the equation all imaginary (n-2) imaginary of the root $3x^2 - 3x - 2 = 0$ is -2, -1	n x^{n} - (b) (d) (cs o -2, (b)	+1=0 (<i>n</i> is even) ar (<i>n</i> -1) imaginary none of the above of the equation the other roots ar $-\frac{1}{2}, 1$

7. The least degree of the equation with rational coefficients one of whose roots $\sqrt{2} + \sqrt{3}$ is

Page 3 Code No. : 20710 E

PART B — $(5 \times 5 = 25 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

11. (a) Find the p-r equation (pedal equation) of the curve $r^2 = a^2 \sin 2\theta$.

Or

- (b) Find the coordinates of the center of curvature of the curve $x^3 + y^3 = 3axy$ at $\left(\frac{a}{2}, \frac{a}{2}\right)$.
- 12. (a) Find the area of the region common to $y^2 = 4ax$ and $x^2 = 4ay$.

(b) If
$$u = 2xy$$
, $v = x^2 - y^2$, $x = r\cos\theta$, $y = r\sin\theta$,
evaluate $\frac{\partial(u, v)}{\partial(r, \theta)}$ without actual substitution.

13. (a) Prove that
$$\boxed{\left(\frac{n+1}{2}\right)} = \frac{(2n)!\sqrt{\pi}}{4^n n!}$$
 where $n = 0, 1, 2, ...$

(b) Prove that

$$\int_{0}^{\frac{\pi}{2}} \sin^{p} \theta \cos^{q} \theta d\theta = \frac{1}{2} \beta \left(\frac{p+1}{2}, \frac{q+1}{2} \right).$$

Page 4 Code No. : 20710 E

[P.T.O.]

14. (a) Show that the sum of the 6th powers of the roots of $x^7 - x^4 + 1 = 0$ is 3.

Or

- (b) If α , β , γ are the roots of the equation $x^3 + \alpha x^2 + bx + c = 0$, form the equation whose roots are $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$.
- 15. (a) Transform the equation $x^4 4x^3 18x^2 3x + 2 = 0$ into an equation with the third term absent.

Or

(b) Remove the fractional coefficient from the equation $x^3 + \frac{1}{4}x^2 - \frac{1}{16}x + \frac{1}{72} = 0$.

PART C — $(5 \times 8 = 40 \text{ marks})$

Answer ALL questions, choosing either (a) or (b).

16. (a) Find the coordinates of the center of curvature of $y = x \log x$ at the point where $\frac{dy}{dx} = 0$.

Or

(b) Find the evolute of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.

Page 5 Code No. : 20710 E

17. (a) By changing the order of integration, evaluate the integral $\int_{0}^{1} \int_{y}^{2-y} xy dx dy$.

Or

(b) By changing into polar coordinates, show
that
$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy = \frac{\pi}{4}$$
. Hence evaluate
 $\int_{0}^{\infty} e^{-t^2} dt$.

18. (a) Evaluate
$$\int_{0}^{1} x^{m} (1-x^{n})^{p} dx$$
 in terms of gamma functions and hence find $\int_{0}^{1} \frac{dx}{\sqrt{1-x^{n}}}$.

Or

(b) Using gamma functions evaluate $\iint xy(1-x-y)^{\frac{1}{2}}dxdy \text{ over the area enclosed}$ by the lines x = 0, y = 0 and x + y = 1 in the positive quadrant.

19. (a) Solve $6x^2 - 11x^2 + 6x - 1 = 0$ where roots are in harmonic progression.

Or

(b) If a+b+c+d=0, show that

$$\frac{a^5 + b^5 + c^5 + d^5}{5} = \frac{a^2 + b^2 + c^2 + d^2}{2} \cdot \frac{a^3 + b^3 + c^3 + d^3}{3}$$

20. (a) Show that the equation $x^4 - 3x^3 + 4x^2 - 2x + 1 = 0$ can be transformed into a reciprocal equation by diminishing the roots by unity. Hence solve the given equation.

 \mathbf{Or}

(b) Solve the equation

$$6x^6 - 35x^5 + 56x^4 - 56x^2 + 35x - 6 = 0.$$

Page 7 Code No. : 20710 E